HC (ABSOLUTE)

ON

$\eta_{\rm sat. vap.}^{\rm red.}$
0.270
0.300
0.318
0.35
0.40
0.48
0.60
0.75
1.000

IC VISCOSITY

	$v_{\rm sat. vap.}^{\rm red.}$
	19.92
	9.39
	5.67
	3.67
	2.43
	1.78
	1.35
000	

viscosity n ^{red.} n ^{sat.} vap.	OF WATER,
Tild.	$\eta_{\mathrm{sat. vap.}}^{\mathrm{red.}}$
1-71	
3-39	
1-26	
-613	
-85:	
-57.	0.3705
-414	0.428
.71,	0.4915
25,	0.569
10,	0.605
91,	0.658
64.	0.736
404	0.808-
000	1.0000

Mercury, sodium and potassium

Here it should be noted that CODEGONE⁽⁷⁾ shows, in complete disagreement with this work, mercury to follow closely the van der Waals liquids (see *loc. cit.*,⁽⁷⁾ p. 50 his Fig. 1); he shows (Hg)_{liq.} (identified as -) to have at $T_{red.} \simeq 0.36$ a $\eta_{red.} \simeq 27$. Our Table 1a and Fig. 1 show that $\eta_{red.} = 2.05$ at $T_{red.} = 0.36$, i.e., is 13x smaller than CODEGONE's value. Similarly, in his Fig. 4 (*loc. cit.*, p. 50) he shows $v_{red.}$ of liquid mercury to equal 10 at $T_{red.} \simeq 0.40$, not far from the curve of van der Waals liquids,

TABLE 5b.—REDUCED KINEMATIC VISCOSITY OF WATER, $\nu_{1iq.}^{red.}$, AND SATURATED STEAM, $\nu_{st.vap.}^{red.}$.

t (°C)	$T_{\rm red.}$	v_{1iq}^{red} .	$v_{\rm sat. vap.}^{\rm red.}$	
-9.30	0.407,	20.110		
0 = m.p.	0.4221	14.110		
20	0.453	7.904		
40	0.483 ₈	5.183		
60	0.514,	3.747		
80	0.5456	2.883		
100	0.5765	2.325		
150	0.6538	1.5906	46.378	
200	0.7310		17.402	
250	0 0.8083		7-8504	
300	00 0.8855		3.9291	
320	0.9164	0.9164 1.007, 2.9		
340	0.9473	1.0000 2.2		
360	0.9782 1.0000		1.6380	
370	0.9937	1.0000 1.29		
374.15 = c.p.	1.000	1.0000	1.0000	

TABLE 6.—ABSOLUTE	VALUES	OF	CRITICAL	VISCOSITIES	AND
CRIT	ICAL TE	MPE	RATURES		

		Hg	Na	K	Ar	H_2O
T _{erit} .	°C	1460°	2530°	2180°	-122·46°	374·15°
	°K	1733°	2800°	2450°	150.69°	647·31°
nerit	(mP)	4.25	0.69	0.52	0.40	0.413
Perit.	(mS)	0.841	3.94	3.06	0.753	1.270

whereas in our Fig. 2, $v_{\text{red.}} = 0.58$ @ $T_{\text{red.}} = 0.40$, i.e., has a 17× smaller value!

More drastic are the differences in *reduced kinematic viscosities* as can be seen in Fig. 2; the $v_{red.}$ of *all three metallic liquids* decrease *below* the critical viscosity for most of the liquid range and only rise above the critical viscosity in the vicinity of the melting points. In contrast, the liquid argon curves *dips* for only a few degrees below the critical temperature and then rises abruptly like the curve for liquid water.

A few words regarding *fluidity*, ϕ , may be in order; it is defined as $\phi = 1/\eta$ (and measured in reciprocal poises or rhes) and reduced fluidity, $\phi_{\text{red.}} = 1/\eta_{\text{red.}}$. A plot of $\phi_{\text{red.}}$ v. $T_{\text{red.}}$ on a logarithmic plot is a *mirror image* reflected by a plane through the $\eta_{\text{erit.}}$ line of the curve of $\eta_{\text{red.}}$ v. $T_{\text{red.}}$ (since $\log \phi = -\log \eta$) and does *not disclose* any new relationships not disclosed in Fig. 1.

The saturated vapours of metals, as Fig. 2 shows, have v_{red} , very close to the v_{red}